WS VI “New trends in open science & steps beyond EERAdata”

From EERAdata Wiki
Jump to: navigation, search

Topic: New trends in FAIR Data & Open Science - Steps beyond EERAdata
Time: 21-23 of February 2023
Place: Høgskulen på Vestlandet (HVL) Campus Bergen, Inndalsveien 28, 5063 Bergen


  1. Explore new trends in open science (from open science publishing to brand-new technologies, co-development of community infrastructure, advanced data tools, cross-disciplinary and industry data collaboration, personal data security and dual-use of data, level of openness (user-access)).
  2. Work on concepts for steps beyond EERAdata.
  3. Produce additional products for communication, dissemination and exploitation of EERAdata material and workshops

Together, the project partners from Norway, Turkey, Austria, Italy, Belgium, and Poland strive to advance efforts on opening databases and making low carbon energy data findable, accessible, interoperable, and re-usable – FAIR. The EERAdata wiki charts the process the consortium has undergone over the past years to develop, test, and implement a FAIR and open data ecosystem in the energy field. Currently, the EERAdata community platform is under development that will provide easy access to a wide range of energy data and offer services for implementing the Findability, Accessibility, Interoperability, and Re-usability data principles. More information on the EERAdata project can also be found on the EERAdata website. Project publications include "FAIR Metadata Standards for Low Carbon Energy Research—A Review of Practices and How to Advance" and "Current state and call for action to accomplish findability, accessibility, interoperability, and reusability of low carbon energy data". The former academic article reviews existing metadata practices in the domain of low carbon energy research and elicits recommendations for advancing FAIR metadata standards, while the latter is the first study to assess and document FAIR data practices in the energy domain.


Time slot New trends in FAIR Data & Open Science - Steps beyond EERAdata
21.02.2023 Tuesday
13.00 – 17.00 Session I: Exploitation and dissemination work
22.02.2023 Wednesday
9.00 – 12.00 Session II: EERAdata final reporting & planning
12.00 – 14.00 Bergen Walk & Talk; street food lunch
14.00 – 17.00 Session III: Roundtable with invited guests
  • 14.00 – 14.45 Guests' entry statements & open discussion
  • 15.00 – 15.45 Explore answers to guiding questions:
  1. Why and how to invest into data interoperability?
  2. How to solve the paradox between open data, data security, and competitive advantage, e.g., for enabling data-based business models and data-driven research?
  • 16.00 – 17.00 Wrap-up & elicit take-home messages
23.02.2023 Thursday
9.00 – 12.00 Session IV: Exploitation and dissemination work

Session III: Roundtable with invited guests

  • Richard Dennis - Danish Technical University and member of EOSC taskforce on FAIR metrics
  • Morten Jacobsen - coordinator of data archive at the Norwegian Agency for Shared Services in Education and Research
  • Rafael Mayo Garcia - CIEMAT and leader of EERA's subprogram Digitalization for energy
  • Mario Drobics - Head of Competence Unit "Cooperative Digital Technologies", AIT Austrian Institute, involved in Gaia-X

Overarching questions:

  1. Why and how to invest into data interoperability?
  2. How to solve the paradox between open data, data security, and competitive advantage, e.g., for enabling data-based business models and data-driven research?

The round table session was moderated and structured into three parts. First, participants where invited to give a short (provocative) statement. It was the starting point for an open discussion. The second part focused on exploring the two guiding questions, while the focus of the final part was on drawing conclusions.


Key issues:

  • Lack of knowledge and misunderstandings about FAIR data. The technical experts for implementing FAIR data principles and suggesting standards are not well connected to the group of those deciding on necessary investments. The danger of creating an empty label around FAIR and open data is high. The problem is compounded by the fact that FAIRification initiatives are insufficiently coordinated in terms of top-down vs. bottom up but also across disciplines.
  • Among the FAIR principles, interoperability is the crux of the matter. While findability and accessibility are handleable through distributed efforts, interoperability requires coordinated strategies and substantial investments. Single projects are charting undiscovered territory, but ultimately these islandic developments also contribute to the lack of interoperability. Lack of distributed responsibilities among the stakeholders (i.e. national institutions, intergovernmental institutions, academic, private and public sectors) adds to the problem.
  • Trust concerns around data need to be identified and addressed, including future implications and consequences. This concerns the establishment of trust mechanisms to enable reuse and exchange between data stakeholders and supporting infrastructures. Moreover, solutions need to stand the test of time (e.g., it needs to be prevented that anonymized data can be traced back to individuals as new algorithms and alternative data enable the reconstruction of the original data).

Solutions - responsibilities for stakeholders and next steps:

  • Society is the ultimate instance to approve societal changes, including pathways towards the future data-driven society. However, in order to be equipped for delivering on the task, citizens must be informed and skilled. In this way, the power of the digital crowd can be utilized.
  • EU-level institutions - being responsible for the implementation of funding and tenders of the European Commission, they should increase their in-house knowledge about FAIR and open data (including connected implementation efforts and resource needs). It is a prerequisite to guide fund receivers on how to budget and implement realistic and useful FAIR data management practices. It also supports the interlinking of initiatives and projects across domains and scales. Streamlining repositories are useful in this respect. National governments - have the responsibility to strategically plan the coordination of FAIRification efforts within and across countries. Overall, the awareness among policy-planners and decision-makers about data interoperability and data trust has to be raised.
  • National and international statistical offices - have the mandate to harmonize statistical efforts across distributed sources of data, suggest standards, and provide passive information on them. For example, industrial standards are an enabler for functioning market competition. As such, statistical offices play a key role in FAIRification and opening of data and should lead the standardization efforts and processes as a top-level coordinating institution.
  • Universities and educational sector - undertake basic and applied research, educate future staff, and provide on-the-job training. Situated as such, they have the responsibility to serve as neutral chaperones observing implementation processes, make recommendations for standards, and ensuring that the necessary educational programs are developed and frequented (e.g., domain-specific data stewards, ubiquitous general data competencies) - educating students, staff, and the general public.
  • Applied research institutes - have the mandate to promote and facilitate the applicability of scientific results. Situated as such, the responsibility to expedite a functioning interface between industry, policy, and academia lies with them. Awareness towards the value of FAIR and open data has to be systematically raised, becoming a by-default-matter.
  • Industry - develop and realize business models around FAIR and open data services. Their responsibility lies in compliance with standards and regulations for transparency and trust into data. Based on their experiences, industry should flag early potentially arising issues.
  • Cross-country research organizations and networks - bring together diverse stakeholders, which places them in the prime position for enabling communication across-the-board. Often directly linked to policy planning and decision-making, their responsibility lies in delivering key messages about the FAIRification process and its importance. Examples of overall relevant networks include the European Open Science Cloud, OpenAIRE, FAIR-IMPACT, CESSDA, and the Research Data Alliance. An example for a domain-specific network is the European Energy Research Alliance with access to the Directorate-General for Energy (DG Ener).

Last but not least, the FAIRification of data has to go hand in hand with the overall digitization of the real world. FAIRification implies the linking of existing standards in all aspects of life with persistent identifiers.

  • link relevant deliverable (D2.4) and publication