FAIR guiding principles
These principles are outlined in Box #2 of Wilkinson et al.[1]
To be Findable:
- F1. (meta)data are assigned a globally unique and persistent identifier
- F2. data are described with rich metadata (defined by R1 below)
- F3. metadata clearly and explicitly include the identifier of the data it describes
- F4. (meta)data are registered or indexed in a searchable resource
To be Accessible:
- A1. (meta)data are retrievable by their identifier using a standardized communications protocol
- A1.1 the protocol is open, free, and universally implementable
- A1.2 the protocol allows for an authentication and authorization procedure, where necessary
- A2. metadata are accessible, even when the data are no longer available
To be Interoperable:
- I1. (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
- I2. (meta)data use vocabularies that follow FAIR principles
- I3. (meta)data include qualified references to other (meta)data
To be Reusable:
- R1. meta(data) are richly described with a plurality of accurate and relevant attributes
- R1.1. (meta)data are released with a clear and accessible data usage license
- R1.2. (meta)data are associated with detailed provenance
- R1.3. (meta)data meet domain-relevant community standards
In order to react to inconsistent interpretations of these principles, Jacobsen et al. specified implications for possible implementations of these principles, starting from the objectives behind the FAIR principles:
Findability: Digital resources should be easy to find for both humans and computers. Extensive machine-actionable metadata are essential for automatic discovery of relevant datasets and services, and are therefore an essential component of the FAIRification process ...
Accessibility: Protocols for retrieving digital resources should be made explicit, for both humans and machines, including well-defined mechanisms to obtain authorization for access to protected data.
Interoperability: When two or more digital resources are related to the same topic or entity, it should be possible for machines to merge the information into a richer, unified view of that entity. Similarly, when a digital entity is capable of being processed by an online service, a machine should be capable of automatically detecting this compliance and facilitating the interaction between the data and that tool. This requires that the meaning (semantics) of each participating resource – be they data and/or services service – is clear.
Reusability: Digital resources are sufficiently well described for both humans and computers, such that a machine is capable of deciding: if a digital resource should be reused (i.e., is it relevant to the task at-hand?); if a digital resource can be reused, and under what conditions (i.e., do I fulfill the conditions of reuse?); and who to credit if it is reused.
Wilkinson et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3:160018 doi: 10.1038/sdata.2016.18.
Jacobsen et al. FAIR Principles: Interpretations and Implementation Considerations. Data Intelligence 2:10-29 (2020) doi: 10.1162/dint_r_00024.